Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Many-body interactions are essential for understanding non-linear optics and ultrafast spectroscopy of materials. Recent first principles approaches based on nonequilibrium Green’s function formalisms, such as the time-dependent adiabatic GW (TD-aGW) approach, can predict nonequilibrium dynamics of excited states including electron-hole interactions. However, the high-dimensionality of the electron-hole kernel poses significant computational challenges. Here, we develop a data-driven low-rank approximation for the electron-hole kernel, leveraging localized excitonic effects in the Hilbert space of crystalline systems to achieve significant data compression through singular value decomposition (SVD). We show that the subspace of non-zero singular values remains small even as the k-grid grows, ensuring computational tractability with extremely dense k-grids. This low-rank property enables at least 95% data compression and an order-of-magnitude speedup of TD-aGW calculations. Our approach avoids intensive training processes and eliminates time-accumulated errors, seen in previous approaches, providing a general framework for high-throughput, nonequilibrium simulation of light-driven dynamics in materials.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Over the last decade KCNQ2 channels have arisen as fundamental and indispensable regulators of neonatal brain excitability, with KCNQ2 loss-of-function pathogenic variants being increasingly identified in patients with developmental and epileptic encephalopathy. However, the mechanisms by which KCNQ2 loss-of-function variants lead to network dysfunction are not fully known. An important remaining knowledge gap is whether loss of KCNQ2 function alters GABAergic interneuron activity early in development. To address this question, we applied mesoscale calcium imagingex vivoin postnatal day 4–7 mice lacking KCNQ2 channels in interneurons (Vgat-ires-cre;Kcnq2f/f;GCamp5). In the presence of elevated extracellular potassium concentrations, ablation of KCNQ2 channels from GABAergic cells increased the interneuron population activity in the hippocampal formation and regions of the neocortex. We found that this increased population activity depends on fast synaptic transmission, with excitatory transmission promoting the activity and GABAergic transmission curtailing it. Together, our data show that loss of function of KCNQ2 channels from interneurons increases the network excitability of the immature GABAergic circuits, revealing a new function of KCNQ2 channels in interneuron physiology in the developing brain.more » « less
An official website of the United States government
